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Potential flow about two-dimensional hydrofoils 

By JOSEPH P. GIESING A N D  A. M. 0. SMITH 
Douglas Aircraft Company, Aircraft Division, Long Beach, California 

(Received 15 November 1965 and in revised form 6 June 1966) 

This paper describes a very general method for determining the steady two- 
dimensional potential flow about one or more bodies of arbitrary shape operating 
at arbitrary Froude number near a free surface. The boundary condition of zero 
velocity (solid wall) or prescribed velocity (suction or blowing) normal to the body 
surface is satisfied exactly, and the boundary condition of constant pressure on 
the free surface is satisfied using the classic small-wave approximation. Calcula- 
tions made by the present method are compared with analytic results, other 
theoretical calculations and experimental data. Examples for which no com- 
parison exists are also presented to illustrate the capability of the method. 

1. Introduction 
The pressure distribution and flow field about hydrofoils or systems of hydro- 

foils is important for several reasons : the determination of cavitation inception, 
the calculation of boundary-layer characteristics, and the determination of the 
inviscid hydrodynamic characteristics-lift, moment, and wave resistance. Thin 
hydrofoil theory (Keldysch & Lawrentjew 1935; Walderhaug 1964) predicts 
pressures that are physically unrealistic at the hydrofoil nose (usually infinite) 
and unusable either for the determination of cavitation or for the calculation of 
boundary-layer characteristics. Other theories, some based on conformal- 
mapping techniques (Havelock 1936; Kochin 1937; Nishiyama 1957) are re- 
stricted to single bodies. Two theories that do consider the flow about more than 
one body are given by Coombs (1950) and Isay (1960), but both of these are only 
approximate. 

This paper presents a method that determines the flow about one or more 
large-aspect-ratio hydrofoils, of arbitrary shape, moving with constant forward 
speed and at arbitrary Froude number. The Neumann boundary condition on 
the surfaces of the hydrofoils, that is, zero velocity (solid wall) or prescribed 
velocity normal to solid boundaries (suction or blowing), is satisfied exactly by 
a surface source distribution that also satisfies the classic small-perturbation 
free-surface boundary condition. 

The techniques on which the present method is based (Smith & Pierce 1958) 
are not restricted to two-dimensional flow, and therefore an extension to include 
three-dimensional problems such as the flow about submarines and ships may be 
possible (see also Hess & Smith 1964). In  addition, it seems possible to refine the 
method to include higher order terms in the free-surface boundary condition. 

a Fluid Mech. 28 



114 Joseph P. Giesing and A .  M .  0. Smith 

2. Description of the problem 
The problem of concern is the uncavitated two-dimensional potential flow past 

one or more bodies moving with constant forward speed beneath a free surface, 
Since the potential-flow model is used and surface tension effects neglected, the 
governing equations of fluid motion and pressure are the Laplace and Bernoulli 
equations, respectively. They are 

V W  = 0, 

with v = V@. 
The symbolsV, @,p,pand g are the velocity,potential, pressure, mass density and 
acceleration due to gravity, respectively and the subscript co refers to infinity 
upstream at the free surface. 

(1) 

PIP+iv.v+gY = P,lP+B~2,, (2) 

FIGURE 1. Schematic diagram. 

The fluid is assumed to occupy the lower half-plane and to be bounded by a free 
surface upon which the pressure is constant. Figure 1 shows the co-ordinate 
system and direction of fluid motion. Boundary conditions must be applied to the 
surfaces X of the hydrofoils and to the free surface. The boundary condition 
applied a t  the hydrofoil surfaces requires that the velocity normal to the surfaces 
either be zero (solid body) or be prescribed (suction or blowing). After the intro- 
duction of the disturbance potential $, defined by 

the boundary condition on the hydrofoil surfaces can be written 
@ = U,X+$, (3) 

where S defines the hydrofoil surfaces, n the outward normal vector and f(S) the 
blowing or suction velocity. 

The boundary condition on the free surface requires that the pressure be 
constant and that the free surface y = ~ ( x )  be a streamline. It can be shown that 
the resulting boundary condition is exactly 
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This condition is non-linear in the potential $, and it is applied to a surface that 
is not known apriori. The last boundary condition that must be applied expresses 
the physically observed fact that the disturbance velocities due to the ensemble 
of hydrofoils vanish only far upstream and far below the foils, that is, 

V$+O when x-f-m, 
V$+O when y-+--00. 

A disturbance downstream (x > 0)  is observed in the form of trailing surface 
waves that apparently would extend to infinity were it not for the effects of 
viscosity. 

Simplification of the free-surface boundary condition 

The problem as posed is highly intractable, because of the free-surface boundary 
condition (5). Since this boundary condition is non-linear and is applied to a 
surface that is not known, some simplification of this boundary condition is 
needed. A linear boundary condition applied at the undisturbed surface y = 0 is 
obtained from (5) if the wave heights and disturbance velocity at the free surface 
are assumed to be small compared to the characteristic length P (usually body 
chord length) and the forward speed U , ,  respectively. (5) then becomes 

where v = gl 77%. With these same assumptions, (2) furnishes an expression for 
the linearized wave height. Thus 

a2$/i3x2 + v(a$/ay) = 0 on y = 0, (7) 

(7) is also obtained as the lowest order term in an expansion of (5) when $ and q 
are expanded in terms of some small parameter E (Wehausen & Laitone 1960). 
The only requirement for E is that 4 vanish in the region of the free surface when 
E vanishes. It is proposed here to consider this expansion in terms of e/h where 
his hydrofoil submergence depth. The first term of the expansion is to satisfy the 
boundary condition on the body surface exactly, that is, satisfy (4). The rest of 
the terms are to satisfy a homogeneous boundary condition on the body surface, 
that is, satisfy (4) with the right-hand side set equal to zero. 

If the depth is sufficiently large, terms of higher order than E can be retained, 
which increases the accuracy. For the present, only the first-order term (7) is used, 
since it offers a practical solution for all but extreme cases and presents no 
convergence difficulties. 

In  what is to follow the characteristic non-dimensional parameter is the 
Froude number. The Froude number is defined in (9) as follows 

Fr = U,(gt‘)-*. (9) 

3. Solution 
The problem to be solved is reduced to finding the solution of the Laplace 

equation that is consistent with the boundary conditions given by (4), (6) and (7) 
and which satisfies the Kutta condition on each body, if applicable. First, an 
elementary solution of the Laplace equation is assumed, of the form 

w, &) = In IIe, &)I + mp7 &). 
8-2 
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The first term on the right is the familiar potential at P due to a unit source a t  Q. 
The second term is a function, non-singular in the region of interest, that causes 
G(P, Q) to satisfy the free surface, radiation and far-field boundary conditions. 
The radiation and far-field boundary conditions are given by (6). The function 
G(P, Q) will be called a source because of its close relation to  the usual simple 
source. Starting with Green’s third identity and using the source G(P, Q) in place 
of the usual source potential, the following equation can be obtained (see Lamb 
1932, p. 60), 

(10) 
1 

#(PI = 4q)  G(P, PI df l ;  
S 

that is, $(P)  is the potential at a general point P due to a distribution, on the 
surface S,  of sources of strength a(q). The value of Q on the body surfaces is 
called q. 

Since an expression for the potential, (lo), is known, the boundary condition on 
the body surface, (4), may be written as follows 

with the assumption of no flow through the hydrofoil surface (suction or blowing). 
Herep is a point on X. If the limit is taken in (1 1) and the principal part abstracted 
from the integral, then the result is a non-singular Fredholm integral equation 
of the second kind for the unknown source strength CT. For convenience the limit 
will not be taken and the integral of (1  1) will be left in its present form. 

(1 1)  then insures that the Neumann boundary condition (4) is satisfied. The 
function K(P,  &) must now be found such that G(P, &) satisfies the free-surface 
condition ( 7 )  and the radiation condition (6). Note that if the individual source 
potential G(P, &) satisfies (6) and (7), an entire distribution of such sources will 
also satisfy (6) and ( 7 ) )  since these boundary conditions are linear and homo- 
geneous. From Kochin, Kibel & Roze (1964), we obtain K(P,  Q) as 

( z - C )  - 2 e--ivz Jz  - m t - C  C a t ] ,  (12) 

where z and c are the complex co-ordinates of P and Q, respectively, and the bar 
indicates the conjugate. It is convenient at  this point to introduce the complex 
potential F such that G = Re ( F )  and dPldx = aG/ax - i aGlay. Here F is 

0 eivt 

-a t - c  
F(z ,c)  = l n (z -~ )+ ln (z -E) -2e -~~~  j -at. 

The integral in (13) can be put into more convenient form by transformation 
using the relation 

and then separating the principal part. The result is 

F(z ,c )  = ln(z-c)+In(z-C)+2PV 

Y ( t  - 2) = - k(z  - C) 

m e-ik(z-E) 

7 (14) - 2mi e-iV(2-L.) so k--y 
where PV means the principal value. Introduction of the real part of (14) into (1 1)  
leads to an integral equation for the unknown source distribution CT that satisfies 
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the Neumann boundary condition on the body surface (4), the linearized free- 
surface condition (7),  and the radiation condition (6). Only the Kutta condition 
is left to consider. 

To satisfy the Kutta condition on each of the bodies, additional solutions must 
be obtained that satisfy the conditions (6) and (7) but are homogeneous in the 
Neumann boundary condition (4), that is, solutions where a#lan = 0 on 8. Any 
number of these solutions may be added to the solution given by (1  1) without 
violating (4). Specifically, one such solution is needed for each body to which a 
Kutta condition is applied. The only non-trivial solution that satisfies these con- 
ditions and is also non-singular within the fluid is a circulatory-flow solution about 
any one of the bodies. The circulation or cyclic constant is arbitrary. One such 
solution must be obtained for each body that can maintain a circulation. The 
cyclic constants associated with the bodies are adjusted, since they are arbitrary, 
until the Kutta condition on each body is satisfied. 

A solution that produces a circulation about a particular body is obtained by 
placing a vortex or distribution of vorticity within the body to produce the 
desired circulation and by cancelling the resulting flow normal to the body surface 
with a source distribution. The vortex or distribution of vorticity must, of course, 
satisfy the boundary conditions (6) and (7), just as the source distribution 
satisfies it. The potential for such a vortex is 

&. = Re zn ir [In (2- c )  -In (z-C) - 2pv dk + 277i e-idz-a] , ( 15) 

where I? is the circulation or cyclic constant. If a$,lan denotes the velocity 
generated by the gradient of (15) normal to and at the body surface, then the 
source distribution crr that cancels this velocity is given by the integral equation 
(11) with Umi.n(p)  replaced by @,(p)/an. 

Solution of the integral equation 

The integral equation to be solved, (ll), can be written 

g(q)  VG(P,  q ) .  n ( P )  dS, 

where V,  can represent either Urn i . n or a#,lan, and G(P,  Q )  is given by the real 
part of (14). For blowing or suction cases, f ( S )  must be added to U,i.n. If the 
integral in (16) is split into a sum of integrals whose range of integration, Ax, is 
small enough so that source strength, CT, can be assumed constant across that 
range, then (16) can be written approximately as 

S k +  A&/2 

P-tp 2n k=l Sk-ASr/z 
- K z  lim- crk 1 VG(P,q) .n(P)dS .  (17) 

There are now N unknown source strengths crk. To obtain N equations, (17) is 
made to hold at N points on the body surface, The points selected are the mid- 
points of the elements, that is, p j .  The surface co-ordinates of p j  are Sj. (17) then 
becomes 
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The first half of ( 1  8) represents N equations in N unknowns and may be solved 
using standard matrix techniques once the influence coefficients A ,  are known. 

To be consistent with the approximation of constant source strength over the 
element, the element is approximated by a flat segment (see figure 2). The above 
approximations become exact in the limit as N -+ a. To enable the limit indicated 
in (18 )  to be taken, the integration is performed analytically for arbitrary P. In  

/ 
Reflected body / 

- /  

Free surface 

z e  

urn <*/Y 
Kth element Body surface 

f l ” f l /  
f l  

FIGURE 2. Typical flat-surface source element and its reflexion. 

performing this integration it is convenient to use complex variables; specifically, 
the complex potential F is used in place of G. The following relations hold between 
the vector and complex forms: 

VG = i(RedF/dz)+j(-ImdF/dz), I, = i(ReIk)+j(--ImI,) ,  (19) 

where I, represents the integral found in ( 1 8 )  and is its complex equivalent. 
If only the kth element is considered, the subscript k may be dropped and I may 
be written as 

From figure 2 the following relations are evident 

By means of (21 )  and (14) ,  (20) becomes 
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The integrals left to evaluate, which are of the form 

can’be handled by using contour integration in the complex k-plane. With refer- 
ence to figure 3, the desired integral can be written 

FIGURE 3. Integration contour in the complex k-plane. 

since the total contour encloses no singularities. It is possible to find an angle ,8 
such that the exponent of e-ik(z*) is purely real along contour 5 and such that the 
integral along contour 4 vanishes. Thus it is found that 

with C = 5- iy and x = x + iy. Note that the sign of /3 is determined by the sign 
of - (x - c) ,  since both y and y are negative. 

The integral along contour 2 is known once the sign of /3 is known, 

(24) 

The integral along contour 5 is evaluated when the exponential is real, that is, 
with k = r (  1 + i tanp), which gives 

where El is the exponential integral. Hess & Smith (1966) present a rapid and 
accurate method for the evaluation of the exponential integral. Here 

Substituting the expressions for the integrals in (24) and (25) into (23) gives 

PV dk = (sgnp) ni e-i+-C.)+ e - i d z d E 1 [  - iv(z  - c)]. (26) 
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Substituting the value of the integral in (26) into (22) completes the evaluation 
of I .  (See Smith, Giesing & Hess 1963 for further details.) 

where 

The quantities z ,  c1 and c2 are shown in figure 2. The expression for I in (27) may 
be used in (18) with the aid of (19) to  produce an expression for the influence 
coefficients Aj,. 

Velocity and pressure jield 
The velocity or the potential field is easily found once the source distribution over 
the bodies is known. The disturbance velocity at any point P due to a source 
distribution is obtained by taking the gradient of (10). The onset flow must be 
added to this disturbance field to produce the total velocity field. Let the sub- 
script 0 denote circulation-free flow and the subscript I? denote pure circulatory 
flow. Then for circulation-free flow the total velocity is 

V,(P) = V@, = V(V,x+#,) = U,i+ cr,(q)VG(P,q)dS. (28) Js 
For a pure circulatory flow the velocity field is 

vr(p) = r (v4r + j s c r ( 4 ) v ~ ( p ,  4) d ~ )  7 (29) 

where I' is the circulation or cyclic constant. The integrals of (28) and (29) are 
evaluated with the same approximations as the integrals of (16). Therefore 

where I, is given by (19) and (27). As was mentioned before, there is one circu- 
latory flow associated with each body which causes a circulation about that body 
alone. A combination of these circulatory flows with the non-circulatory flow 
produces the total velocity field 

V ( P )  = V&p)  + I'iVrl(p) + r2Vr2(P) + ... + rRVrB(P), (31) 

where R is the number of bodies that can maintain a circulation. The cyclic 
constants rl, F2, . . . , rR are adjusted to satisfy the Kutta condition at each of the 
hydrofoil trailing edges by requiring that the velocity at the trailing edge 
elements, i.e. the one above and the one below, be equal. The point P is arbitrary 
and need not be on the body surfaces. Thus the entire flow on or off the body 
surface is determined. 
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The pressure can be obtained from (2). A pressure coefficient is defined as 
follows : cp = (p-pm+pgy)/+pu: = 1-v.v/u2,,  

where the term pgy is purely hydrostatic. The forces and moments are easily 
found after the pressure is known by direct integration as follows: 

C, = Cp(n x r) dS, 
Is 

where r is the position vector from the moment reference point to a surface point. 
These integrals are evaluated approximately using the trapezoidal rule, that is, 
summing element by element. 

4. Calculated results Special cases 

Two special cases of the theory exist when the hydrofoil operatm at an infinite 
depth or when it operates at a Proude number of zero. These cases correspond to 
an airfoil in an unrestricted fluid and in ground effect, respectively. They are 
special because the non-linear boundary condition on the free surface is satisfied 
exactly. 

- Present method 
-35 rftll -6.0 e ExDerimental data 

-3.0 

-2.5 

-2.0 

- 1.5 
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CJ -1.0 
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0 0  

0 5  

- 50 

, .o 

FIGURE 4. Comparison of calculated and experimental pressure distributions on a NACA 
23012 airfoil with fixed slot and slotted flap at  8" angle of attack. CL = 2-26. 

As an example of a hydrofoil a t  infinite depth, figure 4 shows a comparison of 
the calculated and experimental pressure distribution on an airfoil with a fixed 
slot and slotted flap. The experimental data were obtained by Harris & Lowry 
(1942). The agreement is good except over a part of the lower surface of the slot 
where the flow is apparently separated. In all cases the force coefficients shown 
are those calculated by the present method. 
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As an example of the second special case, figure 5 presents a comparison of the 
analytic and calculated pressure distribution on a hydrofoil operating at a Froude 
number of zero. The analytic solution was developed by Giesing (1966). The 
agreement is good. 

0.1'54 1 

- $0 

- 3.0 
Lower surface 
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Present merho 

1 .n 
I "  - 

0 02 0 4  0 6  0 8  1.0 
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FIGURE 5 
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FIGURE 5. Comparison of analytic and calculated pressure distributions on a hydrofoil opera- 
ting at Fr = 0. CL = - 2-11. 
FIGURE 6. Comparison of lift and drag coefficients of a circular cylinder as calculated by the 
present method and as calculated by Havelock. Results for a, dipole are also shown. 

Comparison with other methods and experimental data 

One of the first calculations of the forces on a body under a free surface was for 
a circular cylinder. Havelock (1928) derived expressions for the lift and drag of 
a dipole under a free surface, which were assumed to apply to a circular cylinder. 
Later (1936), he presented the exact solution for the circular cylinder. Figure 6 is 
a comparison of the wave-resistance coefficient, C,, and lift coefficient, C,, of 
a circular cylinder, as calculated by the present method and as given by Havelock, 
and for a dipole as given by Havelock. The lift and drag coefficients are defined 
as the lift and drag divided by p U z  112 where I, in this case, is the circle radius. 
The number of defining elements used for the calculation by the present method 
is 30 and the submergence depth is two radii. 

The effect on the lift and drag of the number of elements used to define the circle 
is of interest, since the accuracy of the present method is a function of this num- 
ber. The following table presents values of lift and drag coefficients a t  a Froude 
number of 1.0 for circles described by 30, 60, 120 and 240 points and exact values 
calculated by Havelock (1936). The table shows a maximum error of 1.4 % for 
wave resistance but a slow convergence to higher accuracy as the number of 
points increases. The values of lift coefficjent calculated by the present method, 
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seem to be converging to a value displaced 3 % from that calculated by using 
Havelock's formulas. This difference is probably due to inaccuracies in Havelock's 
values. 

A recent attempt to test thin hydrofoil theory was carried out in Norway by 
Walderhaug (1964). A series of experimental tests was undertaken to determine 

Number of 
defining Havelock7 
elements 30 60 120 240 exact 

CR 2.1082 2.0671 2.0753 2.0891 2.0948 
CL 1.0826 1.0759 1.0740 1.0795 1.1124 

TABLE 1. Forces on a circular cylinder at Fr = 1.0. 

t Havelock's exact solution is actually a truncated series. The terms of the series are: 
CR = 1.4461448 + 0.45294412 + 0.1781419 + 0.02721836 - 0.00965735. 
0.24738609 +0.05410224- 0.00040036 + 0.02143521. 

CL = 0.78984664 + 

-1.0 - 1.0 
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FIGURE 7. Comparison of the present method with thin hydrofoil theory and experimental 
data for various chord-line depths and Froude numbers. (a )  h/P = 0.3, Fr = 0-774, C, = 0.02, 
CR = 0.0072. ( b )  h/P = 1.0, Fr = 1.414, CL = 0.206, CR = 0.0058. (c) h/P = 2.0, Fr = 2.0, 
CL = 0.273, CR = 0.0041. 
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pressure distributions on a 3 % thick plate hydrofoil with an elliptic nose and 
trailing edge and a NACA 1.75-65 mean-line camber. This model was designed to 
closely approximate the camber-line hydrofoil model of Walderhaug's thin hydro- 
foil theory. Figures 7( a) ,  ( b )  and (c )  present Walderhaug's experimental and theo- 
retical results and corresponding values calculated by the present method. Even 
for this case, the thin hydrofoil theory does not display the qualitative nature 
of the experimental pressure distribution. The results of the present method show 
small pressure peaks at the 10% chord and 90% chord locations. These are caused 
by a discontinuity in surface curvature a t  the points where the elliptic leading 
and trailing edges join the parallel sides of the hydrofoil. 

- 2.0 

-1.5 

-1.0 

- 0.5 

0" 
0 

0.5 

1 .o 
0 0.2 0.4 0.6 0.8 1.0 

._ ~ 

FIGURE 8. Comparison of the present method with the theory of Nishiyama (1957) for a 
NACA 4412 hydrofoil operating at  Pr = 1.0, LZ = 5", and mid-chord depth h/f = 1-0. 

Nishiyama (1957) has developed a theory for thick hydrofoils. In  this theory 
the boundary condition on the body is satisfied by conformal mapping techniques. 
Figure 8 shows a comparison of calculations by the present method and calcula- 
tions by Nishiyama for a 4412 hydrofoil. The pressure distributions are qualita- 
tively different. An experimental investigation of the same airfoil was carried out 
by Ausman (1954); some of the results are presented in figures 9 (a )  and (b ) .  The 
conditions under which the experimental values were taken for figure 9 (a) are 
nearly the same as those for figure 8, and therefore the pressure distributions 
should be in qualitative agreement. Comparison of these figures verifies this kind 
of agreement between the experimental pressure distribution and the pressure 
distribution calculated by the present method. The reason for the discrepancy 
between the latter and Nishiyama's results is not known. 

Also shown in figures 9 (a)  and (b )  are results calculated by the present method 
for the exact conditions of the experiment. The experimental values lie below the 
potential or calculated values at equal values of angle of attack. This is to be 
expected, since the boundary-layer displacement effect lowers the circulation and 
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thus the minimum pressure. Also shown in figures 9 (a)  and (b) are the more con- 
ventional comparisons at equal values of lift. As is to be expected, the agreement 
between the calculated and experimental results is better when the two are 
compared at equal values of lift. 

Present method Experimental -1.5 
a= 5" 

- CL= 0.357 
- 1.0 

-0.5 

& 0  

05 

0 0.2 0.4 0.6 0.8 1.0 y 
(a )  ( a )  

FIGURE 9. Comparison of calculated and experimental pressure distributions on a NACA 4412 
hydrofoil at equal angles of attack and at  equal lift coefficients for various mid chord depths 
at Fr = 1.03. (a )  h/P= 0.94, a = 5", CL = 0.58. ( b )  h/P= 0.60, CL = 5", CL = 0.357. 

The experiments conducted by Ausman were undertaken to show that the 
pressure on the upper surface of a hydrofoil is governed by hydrostatic conditions 
in addition to hydrodynamic conditions. Subsequent to Ausman's experiments, 
Laitone (1954) published a theory consistent with Ausman's experimental data 
that suggests that the minimum pressure on the hydrofoil is related to the 
maximum depth that can be produced by a hydraulic jump. Specifically, the 
theory states that the minimum pressure coefficient can be no less than 
- (h / f ) /Fr2 .  Laitone assumes that the height of the free surface, reduced by 
fluid flow over the shallow hydrofoil, is restored to its original height only by a 
hydraulic jump. Parkin, Perry & Wu (1955) have shown this to be true only at low 
Froude numbers and shallow depths. The hydrodynamical theory loses accuracy 
when a hydraulic jump appears above the hydrofoil, because the free-surface 
boundary has taken on a highly non-linear shape in the immediate vicinity of the 
hydrofoil. Since the hydrofoil is very near the free surface, the errors induced by 
the free-surface non-linearity have no chance to decay with depth. 

Figures lO](a) and (b )  show to what extent the hydrodynamical theory holds 
even when the depth and Froude number are small. Figure 10 (c) shows two cases 
where a hydraulic jump has occurred above the hydrofoil. The hydrodynamic 
theory as calculated by the present method is inaccurate for this case, as is to be 
expected. The limiting negative pressures for the cases presented in figure 10 (c), as 
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calculated according to  the theory of Laitone, are - 6-92 and - 11.8 for Froude 
numbers of 0-604 and 0.462, respectively. These numbers seem to bear little 
relation to the pressure distribution except that the experimental results do 
indeed lie below these limiting values. In  figure 10, only the upper surface 
pressures are shown, since they are all that were measured. The data were taken 

0 0.2 0.4 0.6 08 1.0 
x l p  

- 0.5 

- 0.25 

0 

0.25 

05  
0 0 2  04 0.6 08 x,tl.O - ------- 

p _ _ _ _  - Present . method 
I -0-0- -DD- Experimental data 

1 .n I V  

0 0.2 0.3 0.6 0.8 1.0 

c ,YIP 

(c )  

FIGURE 10. Comparison of calculated and experimental pressure distributions on the upper 
surface of a 12 yo thick symmetric Joukowski hydrofoil at 5" angle of attack. (a )  Fr = 0.95, 
several values of h/Y. ( b )  hjz' = 0.20, two values of Fr. (c )  h/f = 0.25, two values of Fr. 

from the experimental work of Parkin et al. (1955) for a 12 % thick symmetric 
Joukowski hydrofoil. Figure 10 (a) exhibits one peculiarity. Near the hydrofoil 
nose there is a flattening of the experimental pressure peaks, for all cases, that can- 
not be explained by hydrostatic effects, viscous effects, or cavitation effects. This 
flattening persists even to the depth of 1.8 chords, which, for practical purposes, 
is close to infinite depth. The analytic result is shown in figure 10 (a) for infinite 
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depth. It can be seen that the calculation made by the present method for a 
trailing edge depth of 1.8 chords is in better agreement with the analytic result 
than the experimental result is. 

Further examples 

In  order to illustrate the capabilities of the present method, several calculations 
involving multiple bodies are presented. One example, the airfoil with slot and 
flap shown in figure 4, has already been mentioned. In  the example the depth is 
infinite. However, the flow field can be calculated for any depth. 
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FIGURE 11. The pressure distributions and wave systems for two tandem circular cylinders 
operating at  FT = 2.0, centre depths = 2radii, C R ~  = 0.33, C R ~  = -0.30, CR = 0.03, 

t o t a l  
C L ~  = - 0.677, C L ~  = - 0.59. 

p8.0 Upper surface 

Channel floor 

XI? 

FIGURE 12. The pressure distribution and wave system for a circular cylinder operating at  
Fr = 0.80 in a channel. Also shown is the pressure distribution dong the channel floor. Circle 
centre depth = 2 radii, channel floor depth = 5 radii, CL = 2.04, CR = 1.19. 

Figures 11 and 12 present two additional examples of multiple bodies. 
Figure 1 1 presents the pressure distribution and linear free-surface displacement 
for two circular cylinders of unit radius in tandem. The free-surface displacement 
for a single circle is also shown. The drag of the system of two circles is approxi- 
mately one-tenth the drag of a single circle. This reduction in drag is caused by 
a cancellation of the trailing-wave system of the first circle by that of the second. 
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The distance between the two circles was selected as the distance between two 
dipoles whose wave trains cancel to zero. 

Figure 12 presents the pressure distribution and linear free-surface displace- 
ment for a circle in a channel of finite depth. Since the present method was 
developed for a fluid unbounded in depth, the channel was simulated by simply 
placing a plane wall, 80radii in length, as a second body in the infinitely deep 
fluid. The figure also shows that the wave effects have been reduced by the depth 
to the extent that the pressure distribution over the channel floor does not show 
the presence of the waves. 

Y =  0 Free surface s t reamline7 

- 3  \ 
--xi--------- / 

FIGURE 13. Streamlines for a circular cylinder operating at Fr = 2.0, 
centre depth = 2 radii. 

Linearized free surface 7 

FIGURE 14. Streamlines for a circular cylinder operating at Fr = 1.0, 
centre depth = 2 radii. 

As is stated in the theory, the velocity at any point can be determined once the 
surface source strength and cyclic constants are known. Figure 13 presents the 
streamline pattern developed by a circular cylinder under a free surface. The 
streamlines were obtained by numerical integration of the velocity field. It can 
be seen that the free-surface streamline does not correspond exactly to the linear 
free-surface displacement. In  extreme cases the streamline pattern may become 
quite unrealistic, as was recently shown by Tuck (1965). Tuck plotted the stream- 
lines for a dipole under a free surface. In this case the dipole represents only an 
approximation of a circular cylinder. The same calculation was made for a 
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circular cylinder by the present method, and analogous results were obtained 
(see figure 14). 

Work presented here was conducted by the Douglas Aircraft Company, Inc., 
Aircraft Division, under company-sponsored Research and Development Funds. 

R E F E R E N C E S  

AUSMAN, J. S. 1954 Pressure limitation on the upper surface of a hydrofoil. Ph.D. thesis in 
Mechanical Engineering at the University of California, Berkeley, California. 

COOMBS, A. 1950 The translation of two bodies under the free surface of a heavy fluid. 
Proc. Camb. Phil. SOC. 46, 453-468. 

GIESING, J. P. 1966 Two-dimensional airfoil methods. Douglas Aircraft Company Rept. 
LB 31946. 

HARRIS, T. A. & LOWRY, J. G. 1942 Pressure distribution over an NACA 23012 Airfoil with 
a fixed slot and slotted flap. N A C A  Rept. no. 732. 

HAVELOCK, T. H. 1928 The vertical force on a cylinder submerged in a uniform stream. 
Proc. Royal Soc. A 122, 387-393. 

HAVELOCK, T. H. 1936 The forces on a circular cylinder submerged in a uniform stream. 
Proc. Royal SOC. A 157, 526-534. 

HESS, J. L. & SMITH, A. M. 0. 1964 Calculation of non-lifting potential flow about arbitrary 
three-dimensional bodies. J .  Ship Res. 8 ,  no. 2, 22-44. 

HESS, J. L. & SMITH, A. M. 0. 1966 Calculation of Potential Flow about Arbitrary Bodies. 
To be published in Progress in Aeronautical Sciences. Editor, D. Kucheman. Oxford & 
New York: Pergamon Press. Vol. 8 

ISAY, W. H. 1960 Zur Theories der nahe der Wasseroberflaeche fahrenden Tragfiaechen. 
Ingenieur-Archiv, XSLLY B a d ,  295-3 13. 

KELDYSCH, M. W. & LAWRENTJEW, M. A. 1935 On the motion of a wing below the surface 
of a heavy fluid. Z A H I  Paper, Moscow. 

KOCHIN, N. E. 1937 On the motion of profiles of any form below the surface of a heavy 
fluid. Z A H I  Paper, Moscow. 

KOCHIN, N. E., KIBEL, I. A. & ROZE, N. V. 1964 (Boyanovitch, D., Trans.) Theoretical 
Hydromechanics, 475-490. New York, London, Sydney : Interscience Publishers. 

LAITONE, E. V. 1954 Limiting velocity by momentum relations for hydrofoils near the 
surface and airfoils in near sonic flow. Proceedings of Second U.S. National Congress of 
Applied Mechanics, pp. 751-754. 

LAMB, H. 1932 Hydrodynamics. Cambridge University Press. 
NISHII-AMA, TATSUO 1957 Study on submerged hydrofoils. Society of Naval Architects of 

Japan, 60th Anniversary Series, 2, 95-134. 
PARKIN, B. R., PERRY, B. & Wu, T. Y. 1955 Pressure distribution on a hydrofoil running 

near the water surface. Calif. Inst. of Tech. Hydrodynamics Lab. Rept. no. 47-2. 
SMITH, A. M. O.,  GIESING, J. P. & HESS, J. L. 1963 Calculation of waves and wave resist- 

ance for bodies moving on or beneath the surface of the sea. D o u g h  Aircraft Company 
Rept. LB 31488. 

SMITH, A. M. 0. & PIERCE, JESSE 1958 Exact solution of the Neumann problem. Calcula- 
tion of non-circulatory plane and axially symmetric flow about or within arbitrary 
boundaries. Douglas Aircraft Company Rept. ES 26988. 

TUCK, E. 0. 1965 The effect of non-linearity at  the free surface on flow past a submergecl 
cylinder. J .  Fluid Mech. 22, 401-414. 

WALDERHAUG, H. A. 1964 On the chordwise pressure distributions on submerged hydro- 
foils. Norwegian Ship Model Experiment Tank Publication no. 75. 

WEHAUSEN, J. V. & LAITONE, E. V. 1960 Handbook of Physics, 9, Surface Waves. Berlin: 
Springer-Verlag. 

9 Fluid Mech. -08 




